Oxidation of cysteine and glutathione by soluble polymeric MnO2.

نویسندگان

  • Julián Herszage
  • María dos Santos Afonso
  • George W Luther
چکیده

The kinetics of reduction of soluble polymeric MnO2 by cysteine and glutathione has been studied in the pH range of 4.0-9.0. The concentration of thiols was varied between 1 and 2 mM, while the MnO2 concentration was varied between 2 and 12 microM. In this pH range, the reaction products were identified as Mn(II) and the corresponding disulfides (cystine and glutathione disulfide). Cysteic or cysteine sulfonic acid was formed only when pH < 2. Experimental data indicate that the rate law over the pH range of 4-9 is first-order in both MnO2 and thiol concentration. Eyring plots for both thiols reacting with MnO2 indicate that the reaction is associative (deltaS(double dagger) approximately -160 J mol(-1) K(-1)) and proceeds via an inner-sphere redox process. The reaction proceeds via the formation of two different inner-sphere complexes [triple bond]Mn(IV)SR- and [triple bond]Mn(IV)SR and their further reaction to products. Both surface species are linked to each other via acid-base equilibria, and the rate constant decreases as pH increases. The presence of two ligand surface species is determined using surface complexation modeling. A reaction mechanism in agreement with the experimental results is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioorganic investigation of encapsulated Cysteine derivative into polymeric nanocarrier

In this work, the copolymer-based synthesized Cysteine-loaded nanocarriers prepared by a routine protocol, coprecipitation method. It is the first report to investigate the neuroprotective potential and biocompatibility of Cysteine derivatives loaded into poly(ethylene glycol)-block-poly(ε−caprolactone) methyl ether (PEG-b-PCL). The average size of the polymeric/empty NCs was 89 nm and for poly...

متن کامل

Efficient oxidation of cysteine and glutathione catalyzed by a dinuclear areneruthenium trithiolato anticancer complex.

The highly cytotoxic diruthenium complex [(p-MeC(6)H(4)Pr(i))(2)Ru(2)(SC(6)H(4)-p-Me)(3)](+) (1), water-soluble as the chloride salt, is shown to efficiently catalyze oxidation of the thiols cysteine and glutathione to give the corresponding disulfides, which may explain its high in vitro anticancer activity.

متن کامل

Bioorganic investigation of encapsulated Cysteine derivative into polymeric nanocarrier

In this work, the copolymer-based synthesized Cysteine-loaded nanocarriers prepared by a routine protocol, coprecipitation method. It is the first report to investigate the neuroprotective potential and biocompatibility of Cysteine derivatives loaded into poly(ethylene glycol)-block-poly(ε−caprolactone) methyl ether (PEG-b-PCL). The average size of the polymeric/empty NCs was 89 nm and for poly...

متن کامل

Thermal Plasma-processed Natural Hydroxyapatite-MnO2 Nanoparticles as a Reusable and Green Heterogeneous Catalyst for Aerobic Oxidation of Benzylic Alkyl Arenes and Alcohols

In the present work, we have reported the in situ oxidation of manganese (II) acetate to MnO2 nanoparticles through the thermal plasma carbonized natural hydroxyapatite (MnO2/TP-NHAp) as a neoteric sustainable method. Interestingly, the thermal plasma-processed surface of the NHAp shows a great ability for oxidation of the manganese (II) without need of any external oxidizing agents. The cataly...

متن کامل

Refolding Process of Cysteine-Rich Proteins: Chitinase as a Model

Background: Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain nat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 15  شماره 

صفحات  -

تاریخ انتشار 2003